Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Fundamental validation of fluid-structure thermal interaction simulation code for thermal striping in sodium-cooled fast reactors with parallel triple jets mixing experiments

Tanaka, Masaaki; Kobayashi, Jun; Nagasawa, Kazuyoshi*

Proceedings of OECD/NEA & IAEA Workshop on Application of CFD/CMFD Codes to Nuclear Reactor Safety and Design and their Experimental Validation (CFD4NRS-6) (Internet), 12 Pages, 2016/09

A numerical simulation code named MUGTHES which can deal with conjugate heat transfer problem between the fluid and the structure parts has been developed in order to predict the thermal response in the structure for estimation of the thermal fatigue issue. To perform fundamental validation of the MUGTHES, the benchmark simulation was considered using the experiment of planar triple parallel jets mixing sodium test (PLAJEST). Since it was known by literatures that three representative flow mixing patterns were shown in accordance with the velocity rate of the side jets to the center jet, three typical experimental conditions in the PLAJEST were employed as boundary conditions for the benchmark. Through the numerical simulations, applicability of the large eddy simulation (LES) approach with the standard Smagorinsky model to simulate thermal striping phenomena was confirmed.

Journal Articles

Development of numerical estimation method for high cycle thermal fatigue by coupling of fluid-structure thermal interaction simulation and thermal stress analysis

Tanaka, Masaaki; Miyake, Yasuhiro*

Nihon Kikai Gakkai M&M 2015 Zairyo Rikigaku Kanfarensu Koen Rombunshu (Internet), 3 Pages, 2015/11

A prototype coupling method consisting of the fluid-structure thermal interaction simulation code MUGTHES and the structural thermal stress analysis code FINAS with interface program MUFIN has been developed in order to estimate the thermal fatigue in the SFRs. As a fundamental validation of the coupled method, it was applied to the water experiment for thermal mixing phenomena in a T-junction piping system. In the experiment, thermal interaction between the fluid and the structure made of aluminum installed to the branch pipe side wall was considered. Through the numerical simulations, applicability of the coupled method was confirmed.

Journal Articles

Development of coupled method of fluid-structure thermal interaction simulation and thermal stress analysis for T-junction piping system

Tanaka, Masaaki; Miyake, Yasuhiro*; Karakida, Yasuhisa*

Proceedings of 2nd International Conference on Maintenance Science and Technology (ICMST-Kobe 2014), p.79 - 80, 2014/11

A coupled method of fluid-structure thermal interaction simulation and thermal stress analysis has been developed through the interface program to carry out direct numerical estimation of the thermal fatigue. The prototype method was applied to the thermal mixing phenomena in T-junction Piping System.

Oral presentation

Application of area validation methods for uncertainty quantification in validation process of thermal-hydraulic code for thermal fatigue issue in sodium-cooled fast reactors

Tanaka, Masaaki

no journal, , 

A numerical simulation code named MUGTHES has been developed to estimate thermal fatigue issue in sodium-cooled fast reactors (SFRs). Additionally, author has been developed a practical procedure named V2UP for verification and validation (V&V) process and numerical prediction with uncertainty quantification in order to ensure credibility of the numerical estimation results. In the V2UP, uncertainty quantification is required. Therefore, the area validation metric (AVM) and the modified AVM (MAVM) methods were examined to measure degree of agreement (difference) between the numerical results by MUGTHES and experimental results of sodium experiments (PLAJEST) for the triple parallel jets thermal mixing phenomena. Through the examinations of the AVM and MAVM methods, values of the degree of agreement between them were successfully estimated and it was indicated that the MAVM method could be a reference method in the validation process of the V2UP.

4 (Records 1-4 displayed on this page)
  • 1